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ABSTRACT
In the era of information overload, the value of recommender sys-
tems has been profoundly recognized in academia and industry
alike. Multi-interest sequential recommendation, in particular, is a
subfield that has been receiving increasing attention in recent years.
By generating multiple user representations, multi-interest learning
models demonstrate superior expressiveness than single user repre-
sentation models, both theoretically and empirically. Despite major
advancements in the field, three major issues continue to plague the
performance and adoptability of multi-interest learning methods,
the difference between training and deployment objectives, the
inability to access item information, and the difficulty of industrial
adoption due to its single-tower architecture. We address these
challenges by proposing a novel multi-tower multi-interest frame-
work with user representation repel. Experimental results across
multiple large-scale industrial datasets proved the effectiveness and
generalizability of our proposed framework.
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1 INTRODUCTION
Sequential recommendation systems play a vital role in addressing
the issue of information overload for users, particularly in domains
like e-commerce, social media, and music streaming. They are in-
strumental in optimizing key business metrics such as click-through
rates (CTR). These systems organize items based on when users in-
teract with them, focusing on mining sequential patterns to predict
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the next item of interest to users. Many existing methods combine
user preferences and item characteristics to make accurate predic-
tions. As a result, research in sequential recommendation primarily
revolves around enhancing the quality of how users and items are
represented.

Due to the practical significance of sequential recommendation
systems, various approaches have been proposed, yielding promis-
ing results. For instance, GRU4Rec [1] was the pioneering work that
applied Recurrent Neural Networks (RNN) to model sequential in-
formation for recommendations. Kang and McAuley [2] introduced
an attention-based method to capture complex, dynamic patterns
in sequences. More recently, some approaches, like PinSage [3],
have harnessed Graph Neural Network (GNN) techniques to derive
user and item representations for downstream tasks. Nevertheless,
it’s worth noting that most prior studies have focused on creating a
single, comprehensive representation of a user’s behavior sequence,
which may not effectively capture a user’s diverse interests. Few
studies in the literature have attempted to address the challenge of
representing a user’s multiple interests adequately within a single
vector.

In recent times, there has been a notable rise in the adoption
of multi-interest learning-based approaches [4, 5], demonstrating
significant potential in enhancing matching performance. These
methods explicitly address the challenge of representing users’ var-
ied interests by deriving diverse interest representations from their
behavioral sequences, effectively overcoming the limitations associ-
atedwith a single, generic user embedding. One suchmethod,MIND
[4], achieves this by initially capturing a user’s multiple interests
through dynamic routing, employing a Capsule Network [6]. Sub-
sequently, ComiRec [5] takes the concept of diversity into account
and extends the approach by utilizing multi-head attention mech-
anisms to encode the diverse interests of users. Recent research
efforts [7, 8] have gone even further, incorporating considerations
of periodicity, interactivity, and user profiles into the modeling
process. Additionally, REMI[9] has introduced an interest-aware
hard negative mining strategy and used routing regularization to
address the problem of routing collapse. These advancements re-
flect the growing recognition of the importance of accommodating
users’ multiple interests and improving the overall performance of
matching algorithms in various applications.

Despite the various model architectures and information ex-
plored in the realm of multi-interest learning, the current paradigm
for multi-interest learning frames the challenge of candidate match-
ing as an extreme multiclass classification problem. In this prevail-
ing approach, the user’s behavioral sequence is initially transformed
into a sequence of item embeddings, which are subsequently trans-
lated into multiple interest representations.
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When these multi-interest representations are deployed, they
individually retrieve sets of items using the k-nearest neighbors
(kNN) algorithm. However, during the training phase to create these
multi-interest representations, a label-aware attention mechanism
or argmax selection process is employed to identify the representa-
tion that is closest to the positive target. Once this representation
is selected, it becomes the active user representation and is trained
in a manner similar to general candidate matching. This typically
involves applying a softmax function, either uniformly or according
to a log-uniform distribution [10, 11], to efficiently train the model
on a large dataset. Nevertheless, it’s important to acknowledge that
there are two significant drawbacks associated with this approach.
Firstly, the practice of selecting the most suitable representation
using the target item during training creates a disconnect between
the objectives of the training and deployment phases, leading to
overly simplistic training. Secondly, framing candidate matching
as a multiclass classification problem reduces each candidate item
to a binary label (0 or 1), which fundamentally limits the utilization
of valuable item-side information and semantic knowledge.

To tackle these issues, we introduce a novel approach called
Multi-Tower Multi-Interest Learning (MTMI) as an alternative par-
adigm for multi-interest learning. Our approach not only addresses
the aforementioned issues but also facilitates the seamless adapta-
tion of multi-interest learning to two-tower candidate matching
models, which are widely employed in the industry today.

MTMI draws inspiration from the Deep Structured Semantic
Models (DSSM)[12] approach, where user and item information are
independently processed to produce user embeddings and item em-
beddings. Unlike the common practice of employing a single-user
tower and a single-item tower (the two-tower design), MTMI allows
for the incorporation of multiple user towers, each generating a
distinct user representation. We use an Inverse Distance Weighted
Loss to assess the weighted distance between the generated user
representations and the target item representation. Fig. 1 illustrates
a motivating example of our MTMI framework.

We conducted extensive experiments, comparing MTMI-based
models to MIND-based models under basic settings and applying
state-of-the-art techniques. These experiments utilized three real-
world, large-scale public recommendation datasets. The results
demonstrate that MTMI-based methods significantly outperform
MIND-based methods in basic settings. While they may not surpass
the state-of-the-art in multi-interest learning, they pave the way
for future advancements and improvements in this field.

In summary, our contributions can be distilled into three key
aspects:

• Problem Reevaluation: We reevaluated the prevailing
multi-interest learning paradigm, identifying three signif-
icant issues regarding the disparity between training and
deployment objectives, the constraints on accessing item
information, and the difficulty for industrial adoption.

• MTMI Paradigm Introduction: We introduced a ground-
breaking Multi-Tower Multi-Interest learning paradigm
(MTMI) designed to address these identified problems effec-
tively. MTMI also enhances the applicability ofMulti-Interest
Learning, particularly for two-tower candidate generation
systems commonly used in the industry.

• Empirical Validation: We conducted comprehensive ex-
periments, revealing that MTMI yields substantial improve-
ments over existing multi-interest learning methods, under
the most basic settings. These findings underscore the prac-
tical value and promise of MTMI in the field of recommen-
dation systems.

2 RELATEDWORK
2.1 Candidate Matching
In the context of large-scale industrial recommender systems, can-
didate matching holds significant importance as it effectively nar-
rows down a selection from a vast pool of items for subsequent
refined ranking processes [8, 13, 14]. Given the imperative for effi-
ciency, candidate matching models typically employ lightweight
architectures and often do not incorporate candidate awareness
during user modeling. In earlier stages, solutions based on Collab-
orative Filtering (CF) [15, 16] introduced learnable mechanisms
for matching users with candidates, while Neural network-based
Collaborative Filtering (NCF) [17] enhanced traditional CF with
multi-layer perceptrons. Subsequently, the adoption of two-tower
Deep Neural Network (DNN) structures [10, 12] gained popularity
due to their computational efficiency, avoiding early interactions
between user and candidate modeling. Furthermore, there have
been investigations into tree-based and graph-based structures for
deep candidate matching [18–20]. For instance, PDNP [18] devised
a retrieval architecture based on a 2-hop graph, facilitating online
retrieval with minimal latency and computational costs. However,
these approaches typically represent user preferences as a single
vector, potentially limiting their ability to capture the multi-interest
nature of users.

2.2 Sequential Recommendation
The issue of sequential recommendation stands as a pivotal chal-
lengewithin the realm of recommender systems, and it has garnered
substantial attention in recent research endeavors. Several note-
worthy contributions have focused on addressing this challenge.
For instance, FPMC [21] encapsulates both a conventional Markov
chain and the standard matrix factorization model to handle se-
quential basket data. HRM [22] extends the FPMC framework by
implementing a two-layer structure that facilitates the construction
of a hybrid representation encompassing users and items based
on the most recent transaction. In a pioneering fashion, GRU4Rec
[23] introduces an RNN-based approach to comprehensively model
entire user sessions, thereby enhancing the precision of recom-
mendations. DREAM [24], founded on Recurrent Neural Networks
(RNN), leverages dynamic user representations to unveil evolving
user interests. Fossil [25] seamlessly integrates similarity-based
techniques with Markov Chains to enable personalized sequential
predictions, particularly suited for sparse and long-tailed datasets.
TransRec [26] adopts an approach that embeds items into a vector
space, representing users as vectors that operate on item sequences,
thereby enabling large-scale sequential prediction. RUM [27], on
the other hand, combines a memory-augmented neural network
with insights from collaborative filtering to facilitate recommenda-
tion. SASRec [28] employs a self-attention-based sequential model,
adept at capturing long-term semantics, and employs an attention
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Figure 1: The MTMI candidate matching system using a multi-tower architecture with embedding layers. Item features(right),
are use to compute a item representation(Right). User behaviors and user profiles are mapped to embedding vectors, which are
then used to compute multiple user interst representations. User interest representations and item representation are used to
compute similarity scores and match candidates to users.

mechanism to generate predictions based on relatively limited user
actions. In contrast, DIN [29] introduces a local activation unit
designed to adaptively learn user interest representations based
on past behaviors pertaining to specific advertisements. Finally,
SDM [14] encodes behavior sequences through a multi-head self-
attention module, allowing for the capture of multiple types of user
interests, while a long-short-term gated fusion module is employed
to incorporate long-term preferences. These prior works collec-
tively contribute to the body of research addressing the challenges
posed by sequential recommendation in recommender systems.

2.3 Multi-interest Learning
Recent studies have highlighted the inadequacy of representing
users’ interests as a single vector, leading to increased interest in
multi-interest learning for both the matching and ranking stages of
recommender systems. In the matching stage, MIND [4] introduced
a dynamic routing mechanism to aggregate users’ historical behav-
iors into multiple interest capsules, followed by ComiRec [5], which
explored multi-head attention-based multi-interest routing for a
more diverse user interest representation. PIMIRec[7] and UMI [8]
extended these concepts by incorporating time information, inter-
activity, and user profiles, while Re4 [30] considered backward flow
regularization. Furthermore, REMI[9] has presented a strategy for
mining hard negatives that takes into account user interests and
has employed routing regularization as a means to mitigate the
issue of routing collapse.

2.4 Deep Metric Learning
The main objective of Metric Learning is to measure the similarity
of samples using an optimally learned distance metric[31, 32]. In
recent years, Deep Metric Learning, which empowers metric learn-
ing with deep architectures has been gaining traction due to its
superior expressibility of nonlinearities. It has been widely adopted
in the state-of-the-art (SOTA) face recognition and information
retrieval models[33]. [34] first proposed a contrastive loss for face
recognition, which separates dissimilar samples by a given margin.
The triplet loss, being one of the foundations of this article, is first
proposed in [35], which minimizes the distance between the anchor
and the positive sample simultaneously maximizing the distance
between the anchor and negative samples. [36] proposed quadru-
plet loss to minimize intraclass variation, and [37, 38] improves
sample effectiveness by making full use of samples in a batch, The
learning objective was improved by taking the overall structure of
the dataset into account as in [39, 40]. Despite these innovations.
The triplet loss and contrastive loss remain to be relevant due to
their simplicity and computational efficiency.

3 METHOD
3.1 Problem Formulation
The Candidate Matching phase of the industrial recommendation
system is designed to select a subset of items from a vast item
pool (denoted as I) containing billions of items for each user 𝑢
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Table 1: Notation

Notation Description

𝑢 an user
𝑖 an item
𝑒 the embedding of a feature
𝑡 a target item
𝑣𝑢 a user representation
𝑣𝑖 a item representation
𝑣𝑡 a target item representation
𝐸𝑝 the matrix of a user’s profile embeddings
𝐸𝑡 the matrix of a target item embeddings
𝐸𝑢 the matrix of a user’s behavior embeddings
U the set of users
I the set of items
𝑑 the dimension of an embedding
𝐾 the number of user representations
𝑁 the number of candidate items

belonging to the set of usersU. This subset should consist of only a
few thousand items, and each item should be relevant to the user’s
interests. To accomplish this objective, historical data generated by
the RS is gathered to construct a matching model. More specifically,
each instance can be represented as a tuple (𝐸𝑢 , 𝐸𝑝 , 𝐸𝑡 ), where 𝐸𝑢
represents the embedding matrix of items that user𝑢 has interacted
with (referred to as user behavior), 𝐸𝑝 is the embedding matrix that
encompasses the user’s basic profiles (e.g., gender and age), and
𝐸𝑡 is the embedding matrix that encompasses the features of the
target item (e.g., item ID, category ID, brand ID, seller ID, title, etc.).

The main objective of single-tower Multi-Interest Learning algo-
rithms is to learn the mapping 𝑓𝑢𝑠𝑒𝑟 that maps raw feature embed-
dings into user representation vectors.

𝑉𝑢 = 𝑓𝑢𝑠𝑒𝑟 (𝐸𝑝 , 𝐸𝑢 ) (1)

which minimize
LSSM (Υ(𝑣𝑡 ,𝑉𝑢 ,𝑉𝑢 ))

Given the user representation matrix 𝑉𝑢

𝑉𝑢 =

(
𝑣
(1)
𝑢 , 𝑣

(2)
𝑢 , 𝑣

(3)
𝑢 , ..., 𝑣

(𝐾 )
𝑢

)
∈ 𝑅𝑑×𝐾

and the label aware attention Υ

Υ(𝑣𝑡 ,𝑉𝑢 ,𝑉𝑢 ) = 𝑉𝑢𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑃𝑜𝑤 (𝑉𝑇𝑢 𝑣𝑡 , 𝑝))

For a detailed description of the notation used in our formulation,
please refer to Table 1.

3.2 Embedding Layer & Pooling Layer
The embedding layer in the Multi-Tower Multi-Interest (MTMI)
framework plays a crucial role in capturing the essence of user
behavior and item features. This layer acts as a bridge between
raw user interactions and item attributes, transforming them into
dense, continuous vectors that can be easily processed by subse-
quent layers of the model. The embedding layer takes user behavior
sequences, user profiles, and item features as input and represents
them as numerical embeddings in a continuous vector space.

3.3 Representation/Interest Extraction
In MTMI-basic, a simplified approach is adopted for the represen-
tation extraction module, referred to as "the towers." Instead of
employing complex architectural components, the representation
extraction module in this variant relies on straightforward attention
fusion modules as illustrated in 3. [41, 42]

𝑤 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑝𝑟𝑜 𝑗𝐿 (𝑒1 | |...| |𝑒𝐿)) (2)

𝑓 =

𝐿∑︁
𝑖=1

𝑤𝑖𝑒𝑖 (3)

3.4 Multi-tower Architecture
The Multi-Tower Multi-Interest (MTMI) framework incorporates
a unique multi-tower architecture designed to enhance the mod-
eling of user interests and item characteristics. This architecture
comprises multiple user towers and an item tower, all of which
share a common embedding layer. This is demonstrated in Fig. 1.
During the training phase, the multiple user towers independently
generate user representations, while the item tower simultaneously
produces a target item representation. These user representations
are designed to exhibit repulsion from one another, reflecting the
diversity of user interests within the system. At the same time, they
are drawn towards the target item representation.

In the deployment phase, the user representations produced by
the user tower individually gather a collection of nearby item repre-
sentations, along with the associated distances, using the K-Nearest
Neighbor algorithm. Subsequently, these sets of items are consol-
idated and arranged based on the estimated distances, resulting
in a ranked order. An illustrative graph of the training phase and
deployment phase can be found in Fig. 2.

3.5 Invert Distance Weighting Loss(IDWLoss)
Given cosine similarity S𝑐 (𝐴, 𝐵), cosine distance D𝑐 (𝐴, 𝐵) and in-
verted distance ID𝑐 (𝐴, 𝐵)

S𝑐 (𝐴, 𝐵) =
𝐴 · 𝐵

| |𝐴| | | |𝐵 | | (4)

D𝑐 (𝐴, 𝐵) = 1 − S𝑐 (𝐴, 𝐵) (5)

ID𝑐 (𝐴, 𝐵) =
1

D𝑐 (𝐴, 𝐵)𝛼
(6)

Our novel IDW loss LIDW can be formulated as

LIDW (𝑉𝑢 , 𝑣+,𝑉−) =
𝐾∑︁
𝑗

ID𝑐

(
𝑣
( 𝑗 )
𝑢 , 𝑣𝑡

)
L𝑡𝑟𝑖𝑝𝑙𝑒𝑡

(
𝑣
( 𝑗 )
𝑢 , 𝑣𝑖+, 𝑣

( 𝑗 )
𝑖−

)
+ 𝛽

𝐾∑︁
𝑗

L𝑡𝑟𝑖𝑝𝑙𝑒𝑡
(
𝑣
( 𝑗 )
𝑢 , 𝑣𝑖+, 𝑣

( 𝑗 )
𝑢−

) (7)

where L𝑡𝑟𝑖𝑝𝑙𝑒𝑡 is a triplet loss commonly used in metric learning.
[35, 43]

L𝑡𝑟𝑖𝑝𝑙𝑒𝑡 (𝑣𝑢 , 𝑣+, 𝑣−) = max (0, 𝛾 − S𝑐 (𝑣𝑢 , 𝑣+) + S𝑐 (𝑣𝑢 , 𝑣−)) (8)

𝑣𝑖+ is the representation of the positive item.

𝑣𝑖+ = 𝑣𝑡 (9)
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Figure 2: A visual representation of the Candidate Matching process, consisting of approximate kNN algorithm with K centroid
for serving(Left), and IDW pulling and User Presentation Repel(Right)

Table 2: Statistics of Datasets

Dataset Users Goods Interactions Cutoff

MovieLens 100k 943 1,349 99,287 20
Retail Rocket 33,708 81,635 356,840 20
Amazon Books 603,668 367,982 8,898,041 20

Gowalla 976,779 1,708,530 85,384,110 40

𝑣𝑢− represents user representations other than the currently se-
lected one.

𝑣
( 𝑗 )
𝑢− =

[
𝑣
(𝑖 )
𝑢 ; 𝑖 ∈ {1, ..., 𝐾}, 𝑖! = 𝑗

]
(10)

Negative items 𝑖− are sampled from a multinomial distribution with
120 samples and 𝑁 classes.

4 EXPERIMENTS
We perform extensive experiments on three real-world recommen-
dation datasets in order to address the following research inquiries:

• RQ1: Can MTMI enhance common two-tower Candidate
Matching models?

• RQ2: Can MTMI beat single tower MIL algorithms under
the most basic settings?

• RQ3:What is the effect of IDWLoss and User Representation
Repel?

• RQ4:What is theOptimal Hyperparameter setting forMTMI?

4.1 Experimental Settings
4.1.1 Dataset. We have opted for the utilization of three extensive
public datasets to conduct an assessment of MTMI’s efficacy:

• Amazon[44]: This dataset encompasses a diverse array of
product views derived from the widely recognized Amazon
platform. For our evaluation, we specifically select the largest
subset focusing on books, characterized by various book
types.

• Gowalla [45]: This dataset collects check-in data fromGowalla,
a location-based social networking website.

• RetailRocket[46]: This datasetmirrors real-world e-commerce
interactions and spans a four-month duration, capturing
various user behaviors. For the purpose of our study, we
exclusively consider the view events within this dataset.

• MovieLens[47, 48]: This dataset was acquired from the
MovieLens website over a seven-month duration. Subse-
quently, a data cleaning process was undertaken, wherein
users with fewer than 20 ratings or those lacking compre-
hensive demographic information were excluded from the
dataset. We use the 100k version of this dataset for the hy-
perparameter scan.

To ensure consistency and comparability, we have implemented
dataset preprocessing methodologies in alignment with a prior
research study [4, 5, 9]. This process involves the removal of items
and users with occurrences falling below a predefined threshold
of 5, maximum user behavior sequence length set to 20. Moreover,
all user interactions within these datasets are treated as implicit
feedback. For a detailed summary of the statistical attributes of the
three datasets post-preprocessing, we refer to Table 2.

4.1.2 Training and Evaluation Setup. In adherence to the method-
ologies established in prior studies [4, 5, 9], we perform the parti-
tioning of our dataset into training, validation, and test sets, main-
taining a ratio of 8:1:1 concerning distinct users. In the training
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phase, models are trained to utilize the complete user behavior
sequences from the training set. During the evaluation process,
we employ the initial 80% of the user behavior sequence to infer
user embeddings, subsequently calculating the designated metrics
using the remaining 20% of items within the sequence. For further
elaboration, additional comprehensive information can be obtained
from references [4, 5, 9]. We employ widely recognized evalua-
tion metrics, specifically Recall, Hit Rate, and NDCG (Normalized
Discounted Cumulative Gain), to assess the effectiveness of our
proposed solution. These metrics are computed based on the top
20/50 matched candidates.

4.1.3 Baseline Models. To demonstrate the effectiveness of our
MTMI framework, we compare it with classic single-tower MIL
models such as MIND and ComiRec, some of the general sequential
recommendation algorithms, as well as the SOTA single-tower MIL
model REMI.

• Most Popular An algorithm recommending the most popu-
lar item to its users.

• YouTube DNN An influential industrial Deep Neural Net-
work (DNN) model that aggregates behavior. embeddings,
subsequently employing Multi-Layer Perceptron (MLP) lay-
ers to derive user representation.

• GRU4RecThe first sequential recommendationmodel based
on Recurrent Neural Networks (RNN) that captures sequen-
tial patterns.

• Que2SearchAn influential industrial DNNmodel that aggre-
gates behavior embeddings, subsequently employing Simple
Attention Fusion layers to derive user representations.

• MIND Pioneering the realm of multi-interest learning frame-
works, it leverages capsule networks to capture diverse user
interests.

• ComiRec An advanced multi-interest framework that per-
mits control over diversity and introduces a multi-head at-
tention mechanism for modeling various user interests. The
multi-head attention version, "ComiRec-SA", became the
standard backbone for Multi-Interest Learning frameworks
for its simplicity and stability.

• REMI The SOTA single-tower multi-interest learning frame-
work that effectively tackled issues related to the challenge
of "easy negative" instances and the problem of "routing
collapse." This successful intervention has led to significant
enhancement in performance.

4.1.4 Implimentation Details. Our model was constructed using
Torch 2.0.1, and for the purpose of k-nearest neighbors (kNN) search,
Faiss 1.7.3 was employed. To visualize the outcomes, Matplotlib
and Wandb were utilized. The optimization of hyperparameters
involved an exhaustive grid search encompassing alpha, beta, and
the number of towers or interests (referred to as K). This meticulous
exploration led to the identification of the most effective parameter
set {𝛼 = 5.5, 𝛽 = 6, 𝐾 = 8}, which subsequently became the default
configuration for our experiments unless otherwise specified. Simi-
larly, the embedding dimension was firmly set at 64, while the batch
size was established at 128 to ensure efficient model training. The
learning rate was defined as 1 × 10−3 to strike a balance between
convergence speed and model accuracy. For addressing negative

Figure 3: Study of the effect of IDWLoss. We use ML-100k
dataset for these comparisons.

training requirements and maintaining consistency, the batch-wise
shared negative training sample size was set at 128 * 10, and the
number of negative samples was consistently maintained at 120
for all applicable experiments. These implementation details are
pivotal for the reproducibility and robustness of our experimental
procedures.

4.2 Enhancement to two tower models (RQ1)
We employed the MTMI scheme on three popular two-tower vector
retrieval models, YouTube DNN,GRU4Rec,Que2Search to test if
MTMI can effectively and consistently enhance existing two-tower
models.

As illustrated in Table 3, the MTMI-enhanced models signifi-
cantly outperform their vanilla counterparts.

4.3 Comparison with Basic MIL models (RQ2)
We also compared the performance of the MTMI-GRU model with
basic MIL models. As illustrated in the able, the MTMI models also
outperform basic MIL models.

4.4 Comparison with SOTA MIL models (RQ3)
Having comprehensively assessed MTMI in contrast to conven-
tional single-tower models, we have additionally conducted a com-
parative analysis with the state-of-the-art (SOTA) single-tower
multi-interest learning framework, REMI. Acknowledging that this
comparison may not be entirely equitable, as REMI incorporates
numerous advanced techniques and strategies specialized for single-
tower MIL.

4.5 Abalation Study(RQ4)
To properly address the effectiveness of IDWLoss and User Rep-
resentation Repel(URR). We conduct an ablation study for each of
these methods.

The result of quadruple-user-tower IDWLoss(without represen-
tation repel) is compared with the single-user-tower triplet loss
and quadruple-user-tower minimum loss. As we can see in Fig. 3,
the IDWLoss empowered model outperforms the triplet loss model
and the performance of the model that uses Label Aware Attention
and Sampled Softmax quickly regresses due to information leakage
and overfitting.

We also compared turning the URR on and off. As we can see in
Fig. 4, the URR-enhanced model demonstrated significantly better
performance.
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Table 3: Comparing Performance of existing dual tower models and their MTMI enhanced version.

Dataset Metric Pop GRU4Rec MTMI-GRU Youtube DNN MTMI-DNN Que2Search MTMI-Q2S

Books

R@20 0.0158 0.0441 0.0478 0.0467 0.049 0.0453 0.0485
HR@20 0.0345 0.1004 0.114 0.1043 0.1155 0.0969 0.0939
ND@20 0.0143 0.0378 0.0363 0.0391 0.0394 0.038 0.0419
R@50 0.0281 0.0706 0.0877 0.0722 0.0686 0.0702 0.0794
HR@50 0.0602 0.1553 0.1607 0.1607 0.1594 0.154 0.1801
ND@50 0.0193 0.0443 0.0542 0.0457 0.0404 0.045 0.0549

Gowalla

R@20 0.0231 0.09 0.0884 0.0864 0.0959 0.0809 0.0893
HR@20 0.1121 0.3359 0.3804 0.3211 0.3642 0.3132 0.377
ND@20 0.0483 0.1433 0.1582 0.1384 0.1632 0.1346 0.1629
R@50 0.0365 0.1458 0.1617 0.1388 0.1603 0.1546 0.17
HR@50 0.1582 0.4577 0.5496 0.439 0.4086 0.4791 0.6471
ND@50 0.0569 0.1494 0.1717 0.1434 0.1544 0.1558 0.1683

Retail Rocket

R@20 0.0129 0.0827 0.0918 0.105 0.1175 0.0982 0.1168
HR@20 0.0252 0.1376 0.1431 0.1711 0.2297 0.1216 0.1562
ND@20 0.0098 0.0517 0.0669 0.0641 0.0825 0.0703 0.0678
R@50 0.0244 0.1371 0.1628 0.1608 0.1956 0.1321 0.1641
HR@50 0.0462 0.2132 0.2088 0.2518 0.3075 0.12 0.1408
ND@50 0.0139 0.0593 0.0623 0.0701 0.0785 0.0647 0.0656

Table 4: Comparing the performance of basic MIL models
with MTMI-GRU

Dataset Metric MIND ComiRec MTMI-DNN

Books

R@20 0.042 0.0557 0.049
HR@20 0.0986 0.1142 0.1155
ND@20 0.0357 0.0446 0.0394
R@50 0.0687 0.0863 0.0686
HR@50 0.1533 0.1796 0.1594
ND@50 0.0433 0.0511 0.0404

Gowalla

R@20 0.0901 0.0805 0.0959
HR@20 0.3129 0.2901 0.3642
ND@20 0.1331 0.121 0.1632
R@50 0.1456 0.132 0.1603
HR@50 0.4442 0.4086 0.4086
ND@50 0.1424 0.131 0.1544

Retail Rocket

R@20 0.1171 0.1304 0.1175
HR@20 0.1883 0.1904 0.2297
ND@20 0.0698 0.0689 0.0825
R@50 0.1899 0.1922 0.1956
HR@50 0.2927 0.2895 0.3075
ND@50 0.0795 0.0786 0.0785

4.6 Hyper-parameter Studies(RQ5)
Within this segment, an exhaustive examination of three pivotal
hyperparameters in the context of the MTMI model is conducted,
specifically addressing the number of interests denoted by 𝐾 , the
coefficient of distance scaling 𝛼 , and the divergence parameter 𝛽 .
The variable 𝐾 is selected from the set 2, 4, 6, 8, 𝛼 is ascertained
from the interval [0.5, 6], and 𝛽 is chosen from the discrete series

Figure 4: Study on the effect of URR.We use ML-100k dataset
for these comparisons.

Figure 5: Hyperparameter Scan

1, 10, 100, 1000. A comprehensive grid search methodology is em-
ployed to meticulously explore every conceivable permutation of
these parameters. The entirety of this hyperparameter exploration
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is carried out utilizing the Movielens-100k dataset, which is of a
modest magnitude, thereby facilitating rapid iteration across succes-
sive experimental runs. The results of this exhaustive search can be
found at 5, where the performance peaks at 𝐾 = 4, 𝛼 = 2, 𝛽 = 1000.

5 CONCLUSIONS AND FUTUREWORK
In conclusion, this paper has addressed three critical issues in the
field of Multi-interest learning for Candidate Matching: the discrep-
ancy between training and deployment objectives, the challenge of
accessing item information, and the complexities of industrial de-
ployment. To resolve these challenges, we introduced the innovative
Multi-Tower Multi-Interest Learning framework, known as MTMI.
MTMI aligns training and deployment objectives through a novel
IDWLoss, offers the capability to access item information via a dedi-
cated item tower, and facilitates the adaptation of industry-standard
two-tower models for multi-interest learning. Comparative analy-
ses between traditional Multi-Interest Learning methods and MTMI
have revealed substantial improvements in performance.

Although MTMI has significantly enhanced the applicability of
Multi-Interest Learning techniques and outperformed single-tower
methods under basic settings, it has yet to surpass the state-of-
the-art methods in Multi-Interest Learning. Future advancements
and refinements hold the potential to elevate MTMI’s performance
to surpass state-of-the-art methods. There exist several potential
avenues for enhancing MTMI, including the refinement of hard neg-
ative mining strategies, the development of more intricate and bal-
anced loss functions, and the incorporation of effective inter-tower
communication mechanisms. We eagerly anticipate witnessing the
progress and innovations in this evolving field.
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